The decellularized porcine heart valve matrix in tissue engineering: platelet adhesion and activation.
نویسندگان
چکیده
An approach in tissue engineering of heart valves is the use of decellularized xenogeneic matrices to avoid immune response after implantation. The decellularization process must preserve the structural components of the extracellular matrix to provide a biomechanically stable scaffold. However, it is known that in vascular lesions platelet adhesion to extracellular matrix components occurs and platelet activation is induced. In the present study we examined the effects of a decellularized porcine heart valve matrix on thrombocyte activation and the influence of re-endothelialisation in vitro. Porcine pulmonary conduits were decellularized using Triton X-100, Na-deoxycholate and Igepal CA-630 followed by a ribonuclease digestion. Cryostat sections of decellularized heart valves with and without seeding with human umbilical vein endothelial cells (HUVEC) were incubated with platelet rich plasma. Samples were either stained with fluorescent antibodies for CD41 and PAC-I (recognizing the activated fibrinogen receptor) or fixed with glutaraldehyde. Thereafter, the samples were processed for laser scanning microscopy (LSM) or scanning electron microscopy (SEM). Examination by LSM showed numerous platelets with co-localized staining for CD41 and PAC-1 on the nonseeded decellularized heart valve matrix whereas after seeding with endothelial cells no platelet activation was detected. SEM revealed platelet adhesion and aggregate formation only on the surface of the non-seeded or partially denuded matrix specimens. We show in this study that the decellularized porcine matrix acts as a platelet-activating surface. Seeding with endothelial cells effectively abolishes the platelet adhesion and activation and therefore is necessary to eliminate thrombogenicity in tissue engineered heart valves.
منابع مشابه
The Effect of Heparin-VEGF Multilayer on the Biocompatibility of Decellularized Aortic Valve with Platelet and Endothelial Progenitor Cells
The application of polyelectrolyte multilayer films is a new, versatile approach to surface modification of decellularized tissue, which has the potential to greatly enhance the functionality of engineered tissue constructs derived from decellularized organs. In the present study, we test the hypothesis that Heparin- vascular endothelial growth factor (VEGF) multilayer film can not only act as ...
متن کاملPolyelectrolyte multilayer film on decellularized porcine aortic valve can reduce the adhesion of blood cells without affecting the growth of human circulating progenitor cells.
Polyelectrolyte multilayer film modification could be an effective method to reduce the immunological and inflammatory response of the xenogeneic scaffold in vivo, and may also be applied to tissue-engineered heart valve in contact with blood. The objectives of this study are to test heparin-chitosan multilayer film as an antithrombotic coating reagent for decellularized aortic heart valve and ...
متن کاملTissue engineering of heart valves: decellularized porcine and human valve scaffolds differ importantly in residual potential to attract monocytic cells.
BACKGROUND Tissue-engineered or decellularized heart valves have already been implanted in humans or are currently approaching the clinical setting. The aim of this study was to examine the migratory response of human monocytic cells toward decellularized porcine and human heart valves, a pivotal step in the early immunologic reaction. METHODS AND RESULTS Porcine and human pulmonary valve con...
متن کاملBiomechanical properties of decellularized porcine pulmonary valve conduits.
Tissue-engineered heart valves constructed from a xenogeneic or allogeneic decellularized matrix might overcome the disadvantages of current heart valve substitutes. One major necessity besides effective decellularization is to preserve the biomechanical properties of the valve. Native and decellularized porcine pulmonary heart valve conduits (PPVCs) (with [n = 10] or without [n = 10] cryoprese...
متن کاملFine Structure of Glycosaminoglycans from Fresh and Decellularized Porcine Cardiac Valves and Pericardium
Cardiac valves are dynamic structures, exhibiting a highly specialized architecture consisting of cells and extracellular matrix with a relevant proteoglycan and glycosaminoglycan content, collagen and elastic fibers. Biological valve substitutes are obtained from xenogenic cardiac and pericardial tissues. To overcome the limits of such non viable substitutes, tissue engineering approaches emer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Thrombosis and haemostasis
دوره 94 3 شماره
صفحات -
تاریخ انتشار 2005